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Abstract
An analytical method based on enhanced matrix removal–lipid liquid chromatography–tandem mass spectrometry (EMR-LC–
MS/MS) was developed for the determination of neonicotinoid insecticides and metabolites residues (imidacloprid (IMI) and its 
metabolites imidacloprid-urea (IMI-U), imidacloprid-olefin (IMI-O), acetamiprid (ACE) and its metabolite N-desmethyl acetami-
prid (IM 2–1), dinotefuran (DIN) and its metabolite [1-methy1-3(tetrahydro-3-furylmethy1) urea (DIN-UF), thiacloprid (THIA), 
thiamethoxam (TMX), clothianidin (CLO, metabolite of thiamethoxam), and flupyradifurone (FLU)) in milk and infant formula 
milk powder. The residual of neonicotinoid insecticides and their metabolites in samples were exacted by acetonitrile and extraction 
kits. The quantitative detection was performed by LC–MS/MS with multiple reaction monitoring (MRM) modes under positive 
ion electrospray ionization  (ESI+). The isotope dilution internal standard or external standard method was used for quantitation. 
The limits of quantification (LOQs, S/N = 10) were 2 μg/kg (IMI, IMI-U, ACE, IM 2–1, DIN-UF, THIA, and TMX) and 5 μg/kg 
(IMI-O, DIN, CLO, and FLU) for milk; 2 μg/kg (ACE), 15 μg/kg (THIA, IM 2–1, DIN-UF, THIA, and TMX), and 40 μg/kg (IMI-
U, IMI-O, DIN, CLO, and FLU) for infant formula milk powder. At three spiked levels of 5 μg/kg, 10 μg/kg, 50 μg/kg (milk), or 
40 μg/kg, 80 μg/kg, 400 μg/kg (infant formula milk powder), the recoveries were in the range of 71.7–108.7% and 71.9–107.1%; the 
relative standard deviations were below 12.6% and 13.9%, respectively. This method was simple, rapid, and accurate to determine 
the neonicotinoids and their metabolites residues in milk and infant formula milk powder.
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Introduction

Milk is an indispensable food in the human diet for its rich 
nutrition, easy digestion and absorption, good quality, low 
price, and convenient consumption, and it is also the main raw 
material for infant formula milk powder. Therefore, its qual-
ity and safety (e.g., pesticides or veterinary drugs residues) 
directly affects the health of consumers and infants. Neoni-
cotinoids (NEOs) have been widely used for controlling pests 
in crops. They worked by blocking the normal conduction 

of the central nervous system in insects, leading to paralysis 
or death (Matsuda et al. 2001; Chagnon et al. 2015). Studies 
have shown that NEOs can affect animals through the food 
chain, such as by reducing the population of bees (Lu et al. 
2012; Laurino et al. 2013). NEOs have also been detected in 
the bodies of honeybees and in honey (Kaczynski et al. 2017; 
Mitchell et al. 2017). Along with the transmission of the food 
chain, NEOs and their metabolites have been found not only 
in mammals (Ozsahin et al. 2014; Berheim et al. 2019) but 
also in human body fluids (e.g., urine, breast milk) (Osaka 
et al. 2016; Ueyama et al. 2020; Chen et al. 2020). To protect 
the quality of milk and the health of consumers, the maxi-
mum residue limits (MRLs) for some neonicotinoids and their 
metabolites in milk have been clearly defined in the United 
States of America (USA), China, European Union (EU), and 
Japan, as shown in Table 1 (USA. 2014; The National Health 
Commission of the People’s Republic of China 2021; Euro-
pean Union 2022; The Ministry of health, labour and welfare 
of Japan 2022).
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Due to the insecticidal properties of NEOs, the determina-
tion of NEOs residues is currently centered on plant-origin 
products such as vegetables, fruits, and grains (Xie et al. 2011; 
Wang et al. 2012; Vichapong et al. 2013; Pastor-Belda et al. 
2016), while animal origin foods are mainly honey, royal jelly, 
and other bee products (Tanner and Czerwenka 2011; Giroud 
et al. 2013; Yá˜nez et al. 2013; Hou et al. 2019). The detec-
tion methods include high-performance liquid chromatography 
(HPLC) (Jovanov et al. 2015; Vichapong et al. 2015, 2016), liq-
uid chromatography–tandem mass spectrometry (LC–MS/MS) 
(Anand et al. 2018; Zhang et al. 2018a, b; Cui et al. 2021), liq-
uid chromatography–high-resolution mass spectrometry (LC-
HRMS) (Chen et al. 2020; Zhao et al. 2020), electrochemical 
detection (ECD) (Papp et al. 2010; Guzsvány et al. 2011; Brycht 
et al. 2012), capillary liquid chromatography (CLC) (Carbonell-
Rozas et al. 2020a, 2021), and micellar electrokinetic chroma-
tography (MEC) (Carbonell-Rozas et al. 2020b). It should be 
noted that the determination of NEOs residues in other foods of 
animal origin (e.g., milk, meat, and aquatic products) has been 
less studied (Alaa et al. 2010; Xiao et al. 2011; Xiao et al. 2013; 
Craddock et al. 2019). Enhanced matrix removal-lipid (EMR) 
is a technique that is based on hydrophobic interaction and size 
exclusion. It can be used to remove fatty acids, phospholipids, 
triglycerides, and other compounds with long-chain aliphatic 
functional groups from extracts. However, it does not retain 
analytes of interest (DeAtley et al. 2015). EMR has been used 
to determine the presence of NEOs in honeybee and wild boar 
(Sus scrofa L) matrix (Kaczynski et al. 2017, 2021), as well as 
for the detection of drug or pollutant residues in milk, infant 
formula powder, and chicken eggs (Zhang et al. 2018a, b, c; 
Luo et al. 2020; Zhang et al. 2021).

In this work, an LC–MS/MS with EMR method was 
proposed for the simultaneous determination of NEOs and 
their metabolites (imidacloprid (IMI), imidacloprid-urea 
(IMI-U), imidacloprid-olefin (IMI-O), acetamiprid (ACE), 
N-desmethyl acetamiprid (IM 2–1), dinotefuran (DIN), 

[1-methy1-3(tetrahydro-3-furylmethy1) urea (DIN-UF), thia-
cloprid (THIA), thiamethoxam (TMX), clothianidin (CLO), 
and flupyradifurone (FLU)) (Fig. 1) residues in milk and 
infant formula milk powder.

Materials and Methods

Chemicals and Reagents

All reagents were analytical grade unless otherwise stated. Imi-
dacloprid (IMI), acetamiprid (ACE), N-desmethyl acetamiprid 
(IM 2–1), dinotefuran (DIN), thiacloprid (THIA), thiameth-
oxam (TMX), and clothianidin (CLO), the purity was > 99%, 
were purchased from Dr. Ehrenstorfer GmbH (Augsburg, Ger-
many). Imidacloprid-urea (IMI-U, 99.5%) was purchased from 
BePure (Beijing, China); imidacloprid-olefin (IMI-O, 96%) was 
purchased from Toronto Research Chemicals (Toronto, Can-
ada); 1-methy1-3(tetrahydro-3-furylmethy1) urea (DIN-UF, 
96%) was purchased from ANPEL (Beijing, China); flupyradi-
furone (FLU, 99%) was purchased from ChemService (West 
Chester, PA, USA); imidacloprid-D4 (IMI-D4), acetamiprid-
D3 (ACE-D3), thiacloprid-D4 (THIA-D4), thiamethoxam-
D3 (TMX-D3), and clothianidin-D3 (CLO-D3), the purity 
was > 98%, were purchased from C/D/N Isotopes (Quebec, 
Canada); dinotefuran-D3 (DIN-D3, 97%) was purchased from 
Toronto Research Chemicals (Toronto, Canada). These stand-
ards were dissolved with methanol, diluted, and volume fixed 
to obtain 10 μg/mL standard stock solutions, which were then 
diluted to the desired concentrations with methanol as needed.

QuEChERS (quick, easy, cheap, effective, rugged, and safe) 
extraction kits (containing sodium chloride (1.0 g), anhydrous 
magnesium sulfate (4.0 g), sodium citrate (1.0 g), and sodium 
hydrogencitrate sesquinydrat (0.5 g)) and Captiva EMR-Lipid 
purify cartridge (EMR) (6 mL, 600 mg) were purchased from 
Agilent (Folsom, CA, USA). The Prime HLB solid phase extract 
(SPE) cartridge (HLB) (6 mL, 500 mg) was purchased from 
Waters (Milford, Massachusetts, USA). The  C18 solid phase 
extract cartridge  (C18) (3 mL, 500 mg) was purchased from 
SUPELCO (Bellefonte, PA, USA). Acetonitrile (ACN), metha-
nol (MeOH), and formic acid were HPLC grade and purchased 
from Merck (Darmstadt, Germany). Trichloroacetic acid and 
ammonium acetate were analytical reagents and purchased from 
Sinopharm chemical reagent Co., Ltd. (Shanghai, China). Water 
 (H2O) was purified by using a Milli-Q system from Millipore.

Sample Preparation

5.00 g sample (12.5 g infant formula milk powder was diluted 
with 87.5 g water in advance) into a 50 mL centrifuge tube, 
adding isotope internal standard (50 μL, 1000 ng/mL), 15 mL 
of ACN and QuEChERS extraction kit to the tube. The mix-
ture was shaken by vortex for 10 min at room temperature, 

Table 1  Current of maximum residues limits (MRLs) of neonico-
tinoid insecticides in the milk of the USA, China, European Union 
(EU), and Japan

1 The sum of acetamiprid and metabolite IM-2–1 expressed as aceta-
miprid
2 The sum of thiamethoxam and metabolite clothianizine expressed as 
thiamethoxam

Compound USA China EU Japan

IMI 100 100 10 20
ACE (sum with IM 2–1) 3001 20 200 601

DIN 50 100 100 50
THIA 30 50 50 20
TMX (sum with CLO) 20 50 50 102

CLO 10 20 20 10
FLU / 700 10 /
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followed by centrifugation for 5 min at 8500 rpm. Transfer 
the supernatant to a new 50 mL centrifuge tube, and add 
ACN to bring the volume up to 20 mL, mixing the solution. 
Take 4 mL of the extract solution and transfer it to a 15 mL 
centrifuge tube, adding 1 mL of water and mixing. Trans-
fer the solution to an EMR purification cartridge and collect 
the eluate, then elute the cartridge with 2 mL of ACN:H2O 
(20:80, vol/vol) and 3 mL of ACN, collecting all of the elu-
ates. Evaporated the eluate to dryness using a rotary evapora-
tor with a water bath at 40 ℃. The dried extract was reconsti-
tuted with 2 mL of MeOH:0.15% formic acid solution (10:90, 
vol/vol), vortex mixed for 60 s. Filter the solution through a 
0.2 μm nylon membrane, take 0.1 mL of the filtered solution, 
and add 0.9 mL of MeOH:0.15% formic acid solution (10:90, 
vol/vol), mixing using a vortex for 60 s, and then were used 
for LC–MS/MS analysis.

Analytical Conditions of LC–MS/MS

The LC–MS/MS was carried out on liquid chromatogra-
phy–tandem mass spectrometer of 1260–6495 (Agilent 
Technologies, Germany) with an ESI source. A Zorbax 
Eclipse XDB-C18 column (150 mm × 4.6 mm i.d., 5 μm 
particle, Agilent) was used for chromatographic separa-
tion at a flow rate of 0.4 mL/min. The column tempera-
ture was held at 40 °C, and the injection volume was 10 
μL. Mobile phase A was 0.15% formic acid (with 5 mM 
ammonium acetate), and mobile phase B was MeOH. The 
gradient program of mobile phase B was set as follows: 
0 min, 10% B; 0–6.0 min, 10–70% B; 6.0–12.0 min, 70% 
B; 12.0–14.0 min, 70–10% B; 14.0–18.0 min, 10% B.

The mass spectrometer was operated in multiple reac-
tion monitoring (MRM) modes under positive electrospray 

Fig. 1  The chemical structures 
of neonicotinoid and their 
metabolites
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ionization  (ESI+). The operational conditions were as fol-
lows: capillary voltage, 3000 V; ion source temperature, 
150 ℃; drying gas (nitrogen) flow rate, 14 L/min; sheath 
temperature, 350 ℃; sheath gas (nitrogen) flow rate, 10 
L/min. The collision energy of each compound was opti-
mized by flow injection analysis. The transition informa-
tion and optimized parameters for each compound were 
listed in Table 2.

Results and Discussion

Optimization of LC–MS/MS Conditions

As shown in Fig. 2, the precursor ions and the major frag-
ment information were monitored in positive by using flow 
injection for the standard solution of the compound to be 
measured at a concentration of 1.0 μg/mL. According to 
the European Union (EU) Directive 2021/808 (European 
Union 2021), the quantitative confirmation by LC–MS/MS 

must meet 5 identification points (1 point for chromato-
graphic separation, 1 point for the precursor ion, and 1.5 
points for one production). We selected two characteristic 
ion pairs, in which the ion pair with a high signal-to-noise 
ratio, good peak shape, and low interference was used as 
the quantitative ion pair. The ion information as well as 
the optimized collision energy parameters were shown in 
Table 2.

Optimization of Liquid Chromatography Conditions

According to references (Hou et  al. 2019), the amino 
column and  C18 column (4.6 × 100 mm, 5 μm, of both 
sizes) were selected and compared in four separation sys-
tems: MeOH – 0.15% formic acid solution (containing 
5 mM ammonium acetate), MeOH – 0.15% formic acid 
solution, ACN – 0.15% formic acid solution (containing 
5 mM ammonium acetate), and ACN – 0.15% formic acid 
solution. The result showed that the separation effect and 
the signal intensity of the target compounds were better 

Table 2  Mass spectrometry 
parameters for neonicotinoid 
insecticides and metabolites 
analysis

* MS/MS transition used for quantification

Compound MRM transitions (m/z) Collision 
voltage (V)

Retention 
time (min)

Internal standard

Imidacloprid (IMI) 256.1/175.1*
256.1/209.1

21
17

9.50 IMI-D4

Imidacloprid-urea (IMI-U) 212.1/128.1*
212.1/78.1

22
50

9.51 /

Imidacloprid-olefin (IMI-O) 254.1/205.2*
254.1/171.1

18
25

8.98 /

Acetamiprid (ACE) 223.1/126.1*
223.1/56.1

25
18

9.97 ACE-D3

N-desmethyl acetamiprid (IM 2–1) 209.1/126.1*
209.1/90.1

18
40

10.04 /

Dinotefuran (DIN) 203.1/129.1*
203.1/157.1

10
5

7.81 DIN-D3

[1-methy1-3(tetrahydro-3-furyl-
methy1) urea (DIN-UF)

159.2/102.3*
159.2/67.2

10
20

7.20 /

Thiacloprid (THIA) 253.1/126.1*
253.1/186.1

23
14

10.37 THIA-D4

Thiamethoxam (TMX) 292.1/211.1*
292.1/132.1

11
28

8.80 TMX-D3

Clothianidin (CLO) 250.1/169.1*
250.1/132.1

12
20

9.71 CLO-D3

Flupyradifurone (FLU) 289.1/126.1*
289.1/90.2

28
45

9.93 /

Imidacloprid-D4 (IMI-D4) 260.2/179.0 22 9.53 /
Acetamiprid-D3 (ACE-D3) 226.1/126.1 24 10.01 /
Dinotefuran-D3 (DIN-D3) 206.1/132.0 10 7.84 /
Thiacloprid-D4 (THIA-D4) 257.1/126.1 25 10.41 /
Thiamethoxam-D3 (TMX-D3) 295.0/214.2 12 8.82 /
Clothianidin-D3 (CLO-D3) 253.1/172.1 12 9.71 /
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Fig. 2  The ESI–MS/MS product 
scan spectra of IMI, IMI-U, 
IMI-O, ACE, IM 2–1, DIN, 
DIN-UF, THIA, TMX, CLO, 
and FLU
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on the  C18 column than on the amino column, the signal 
response of THIA being more than 10 times higher, and 
IMI-U, ACE, IM 2–1, and DIN-UF being 3 to 6 times 
higher. For the  C18 column under different conditions, the 
result showed that the signal response of each compound 
was significantly higher when MeOH was in the organic 
phase, and the mobile phase contained ammonium acetate; 
therefore, MeOH – 0.15% formic acid solution (containing 
5 mM ammonium acetate) was finally used as the mobile 
phase for separation experimenting. Under this separation 
system, the MRM chromatograms of LC–MS/MS of milk 
spiked with each compound (spiked level: 5 μg/kg) were 
shown in Fig. 3.

Optimization of Extraction

The extraction process parameters were optimized to obtain 
the optimal extraction efficiency and remove proteins and 
lipids from milk or infant formula milk powder to reduce 
the matrix effects. The sample was extracted with several 
different solvents, such as MeOH, ACN, and trichloro-
acetic acid solution (50%); among the MeOH and ACN 
experiments, extraction kits (containing sodium chloride, 
anhydrous magnesium sulfate, sodium citrate, and sodium 
hydrogencitrate sesquinydrat) were added to improve the 
efficiency of extraction and cleanup. The results were 
shown in Fig. 4; when the trichloroacetic acid solution was 
added, the recoveries of IMI (61.1%) and IMI-U (63.4%) 
were lower than 65%; the recovery of DIN (157.8%, MS/
MS transition of 203.1/129.1) would have significant 
matrix effects in the test. When MeOH was used as an 
extracted solution and cleanup with EMR, the recoveries 
of IMI-U (62.2%), ACE (46.9%), IM 2–1 (39.4%), DIN UF 
(54.2%), THIA (40.5%), and CLO (58.1%) were all lower 
than 60%, and when ACE was used as an extracted solu-
tion, the recoveries of each compound were higher than 
80%. Therefore, ACN was used to extract and precipitate 
protein directly.

Optimization of Cleanup Method

The cleanup procedure was optimized by a spiked stand-
ard solution. Both  C18, HLB, and EMR were compared; the 
results were shown in Fig. 5. When  C18 cartridges were eluted 
with acetonitrile directly, the recoveries of DIN (46.9%) and 
DIN-UF (39.8%) were lower than 50%. For HLB cartridges, 
the washing solution of different proportions of ACN/H2O 
10:90, 20:80, 30:70, 40:60, 50:50, 60:40, and 70:30 (vol/
vol) was studied; the results showed that DIN-UF and DIN 
could be eluted separately when the ACN/H2O was 10:90 
and 20:80. The recovery of each compound was higher than 
85% when ACN eluted directly. When the EMR cartridges 
were eluted with ACN/H2O (80:20) and ACN, the recovery 

of each compound was also higher than 85%. Compared to 
the full scan plots of HLB and EMR cartridges solution, EMR 
showed lower baseline noise. Therefore the cleanup procedure 
was finally performed with EMR cartridges.

Fig. 3  The LC–MS/MS MRM chromatograms of milk spiked with 
each compound (5 μg/kg)
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Method Validation Results

Matrix Effect Evaluation

Matrix effects were evaluated by a modified version of the 
equation described by Stahnke et al. (2012). Matrix effects 
(%) = 100% × [peak area (postextracted spiked sample) − peak 
area (solvent standard)]/peak area (solvent standard), where 
peak area (postextracted spiked sample) is the analyte spiked 
into extracted matrix after the extraction and cleanup procedure. 
The peak area of the solvent standard is the same concentration 
of analyte in the solvent solution, and this solvent solution was the 
reconstitution solution used for the postextracted spiked sample. 
So, the negative result indicates suppression, and the positive 
result indicates enhancement of the analyte signal in the postex-
tracted spiked sample. The results were shown in Table 3; IMI-O 
has a significant matrix enhancement effect in milk or infant for-
mula milk powder with matrix effects higher than 50%, while the 
matrix effects of other compounds were lower than 10%. In order 
to reduce the matrix effects, the experiment finally used the addi-
tion of isotope-labeled internal standards and matrix-matched 
solution calibration curves for quantitative determination.

Calibration and Sensitivities

To overcome the matrix effects, the matrix-matched calibra-
tion standards with concentration levels of 0 μg/kg, 5 μg/kg, 
10 μg/kg, 50 μg/kg, and 100 μg/kg (milk) and 0 μg/kg, 40 μg/
kg, 80 μg/kg, 400 μg/kg, and 800 μg/kg (infant formula milk 
powder) for each compound, the isotope-labeled dilution 
internal standard method (IMI, ACE, DIN, THIA, TMX, and 
CLO) and external standard method (IMI-U, IMI-O, IM 2–1, 
DIN-UF, and FLU) were used for quantification of the ana-
lytes. The regression equation and correlation coefficients (r2) 
values were shown in Table 4; the r2 of each calibration curve 

Fig. 4  The extraction efficiencies of neonicotinoids and their metabo-
lites from milk by different solutions

Fig. 5  The recoveries of neonicotinoids and their metabolites by dif-
ferent cleanup cartridges

Table 3  The matrix effects of milk and infant formula milk powder for each compound

1 Milk
2 Infant formula milk powder

Compound MRM transitions 
(m/z)

Peak area 
(postextracted spiked 
sample) 1

Peak area 
(solvent standard) 1

Matrix effects (%)1 Peak area 
(postextracted 
spiked sample)2

Peak area 
(solvent standard)2

Matrix effects (%)2

IMI 256/208.9 288,444 271,016 6.43 278,485 255,607 8.95
IMI-U 212.1/128.1 1,361,556 1,359,134 0.18 1,285,101 1,234,254 4.12
IMI-O 254.07/205.2 29,921 18,013 66.11 24,702 15,816 56.18
ACE 223.1/126.1 2,620,999 2,664,830  − 1.64 2,469,238 2,387,290 3.43
IM 2–1 209.1/126.1 2,480,338 2,504,185  − 0.95 2,394,719 2,262,880 5.83
DIN 202.9/156.8 273,374 285,817  − 4.35 264,514 254,337 4.00
DIN-UF 159/102 1,658,649 1,708,271  − 2.90 1,549,229 1,588,718  − 2.49
THIA 253.1/186.1 298,119 277,619 7.38 273,144 255,907 6.74
TMX 292/211 703,086 682,405 3.03 648,811 641,277 1.17
CLO 250/169.1 176,952 184,232  − 3.95 178,078 179,467  − 0.77
FLU 288.8/125.8 623,655 599,083 4.10 588,194 585,452 0.47
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Table 4  Regression equations, correlation coefficient, recoveries, and repeatability of the neonicotinoids and their metabolites in the milk and 
infant formula milk powder samples spiked at 3 concentrations (n = 6)

Compound Regression equations Correlation 
coefficients (r2)

Spiked level 
(μg/kg)

Recoveries1 (%) RSD1,2 (%) Recoveries3 (%) RSD3 (%)

IMI y = 0.0226*x – 2.85*10−7 0.99964 5.0 88.3–100.6 7.67 80.1–96.7 7.7
10 84.4–102.3 6.54 85.1–97.3 4.9
50 93.9–105.8 4.25 93.4–106.8 4.6

y = 0.00282*x – 3.28*10−8 0.99935 40 86.1–100.6 6.12 78.9–98.3 7.8
80 85.6–96.8 5.05 81.8–99.4 7.3
400 92.0–105.6 4.59 92.8–101.0 3.0

IMI-U y = 75,116.786*x – 1.13 0.99794 5.0 72.5–85.8 7.5 72.8–87.7 7.1
10 73.2–81.5 4.12 73.3–81.3 4.2
50 73.1–88.2 7.91 74.7–93.8 9.4

y = 8562.828*x – 0.122 0.99845 40 72.1–90.4 9.65 71.9–79.0 3.5
80 74.4–92.2 8.17 72.0–77.4 2.5
400 75.9–87.1 5.26 73.2–80.0 3.4

IMI-O y = 1655.740*x – 0.0267 0.99814 5.0 71.8–77.3 3.21 74.4–94.3 10.4
10 73.3–86.7 6.12 72.1–79.7 4.4
50 72.5–97.0 11.14 72.6–83.2 5.4

y = 156.120*x – 0.00210 0.99925 40 72.0–86.6 6.43 73.1–101.6 13.9
80 73.5–99.6 12.15 73.3–92.1 9.2
400 73.1–87.9 7.3 72.2–87.9 9.2

ACE y = 0.0233*x – 3.58*10−7 0.99704 5.0 78.1–83.7 2.52 82.4–87.8 2.8
10 82.6–92.4 4.66 86.3–91.0 2.0
50 81.7–93.6 4.83 89.5–100.0 4.0

y = 0.00286*x – 4.34*10−8 0.99785 40 94.3–87.1 2.89 86.3–90.5 1.9
80 88.9–95.9 4.25 84.7–91.8 2.8
400 89.1–100.4 4.18 87.9–94.2 2.6

IM 2–1 y = 135,240.478*x – 2.013 0.99794 5.0 74.4–93.2 8.56 73.0–91.0 9.3
10 74.6–86.3 6.81 73.3–87.1 7.4
50 75.5–101.7 11.98 77.8–98.7 9.5

y = 16,307.202*x – 0.239 0.99785 40 74.8–81.0 3.04 74.9–82.9 3.7
80 79.2–85.8 2.98 78.9–84.9 2.9
400 80.3–90.6 5.53 80.5–86.3 3.0

DIN y = 0.0133*x – 1.99*10−7 0.99774 5.0 89.5–97.7 3.91 76.8–96.4 7.6
10 91.4–103.5 4.58 85.7–102.9 6.1
50 92.7–105.5 4.75 95.3–105.8 6.1

y = 0.00164*x – 2.34*10−8 0.99885 40 81.1–101.8 9.35 90.0–106.6 6.5
80 75.4–96.5 4.98 91.0–95.8 1.9
400 94.2–102.2 3.12 97.1–104.5 3.3

DIN-UF y = 89,833.547*x – 1.30 0.99824 5.0 71.8–84.5 6.55 73.2–84.0 5.8
10 72.5–77.0 2.32 72.9–78.7 3.0
50 71.7–83.2 6.38 72.4–92.2 10.6

y = 10,501.528*x – 0.142 0.99875 40 73.7–86.4 6.06 72.0–85.6 6.6
80 72.3–82.7 6.35 71.9–77.3 3.1
400 75.3–83.7 4.65 75.1–82.5 3.1

THIA y = 0.00172*x – 2.40*10−8 0.99824 5.0 83.1–89.8 2.89 76.4–86.4 5.1
10 87.7–96.8 3.63 86.8–92.9 2.6
50 93.8–106.2 5.26 93.7–105.7 4.0

y = 2.12*x – 2.87*10−9 0.99945 40 80.1–91.4 4.49 85.4–87.7 1.2
80 84.4–92.5 3.41 83.7–94.8 4.8
400 92.4–98.4 2.55 92.5–98.6 2.3
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was more than 0.995. On the basis of S/N = 10, the limits of 
quantification (LOQ) of the analytes were 2 μg/kg (IMI, IMI-
U, ACE, IM 2–1, DIN UF, THIA, TMX) and 5 μg/kg (IMI-O, 
DIN, CLO, FLU) for milk, 2 μg/kg (ACE), 15 μg/kg (IMI, IM 
2–1, DIN UF, THIA, TMX), and 40 μg/kg (IMI-U, IMI-O, 
DIN, CLO, and FLU) for infant formula milk powder.

Assay Specificity

The specificity was evaluated by the analysis of 20 blank 
milks and 20 infant formula milk powers. No interfering 
peaks from endogenous compounds were found in the reten-
tion time of the target analyte for samples.

Accuracy and Precision

The method accuracy was evaluated by analyzing a series 
of spiked samples following the developed method. Three 
different concentrations (high, medium, and low) of the 
standard target compounds were spiked into the “blank” 
samples and then treated following the optimized experi-
mental procedure, analyzed by LC–MS/MS. The recoveries 
were 71.7–108.7% (milk) and 71.9–107.1% (infant formula 
milk powder). To evaluate the precision of this method, 
both intra-day and inter-day repeatability were examined 
by determination of milk and infant formula milk powder 
sample at three different concentrations. Good stability and 
satisfactory repeatability were achieved, the relative standard 
deviations (RSDs) values of milk were below 11.9% and 
12.6%, infant formula milk powder was below 12.2% and 
13.9% for intra-day and inter-day analyses, respectively.

Determination of Real Samples

15 milk and 21 infant formula milk powder samples were 
purchased from local supermarkets and analyzed by the vali-
dated method (before analysis, infant formula milk powder 

1 Intra-day
2 RSD, relative standard deviation
3 Inter-day
4 Milk
5 Infant formula milk powder

Table 4  (continued)

Compound Regression equations Correlation 
coefficients (r2)

Spiked level 
(μg/kg)

Recoveries1 (%) RSD1,2 (%) Recoveries3 (%) RSD3 (%)

TMX y = 0.0164*x – 1.93*10−7 0.99914 5.0 84.4–92.8 4.07 78.9–98.8 7.9

10 89.6–92.4 2.79 87.6–99.1 4.4

50 102.3–106.9 1.94 100.9–105.8 2.1

y = 0.00212*x – 2.68*10−8 0.99825 40 82.0–95.7 5.5 86.6–95.5 4.2

80 86.8–99.8 5.23 84.4–99.9 5.6

400 89.7–105.1 5.42 96.3–107.1 3.7
CLO y = 0.0259*x – 3.40*10−7 0.99924 5.0 73.7–89.1 7.58 76.2–90.5 7.6

10 82.0–96.0 5.77 88.0–94.9 2.6
50 96.4–104.9 2.8 97.0–104.1 2.6

y = 0.00318*x – 4.23*10−8 0.99945 40 86.1–94.2 3.36 79.0–94.4 7.4
80 82.9–93.4 4.46 81.7–93.1 4.9
400 98.9–104.1 2.19 99.8–104.2 1.8

FLU y = 32,474.611*x – 0.423 0.99934 5.0 76.7–99.8 8.81 76.0–108.7 12.6
10 7.21–84.9 6.72 73.8–98.8 10.3
50 84.3–107.9 9.86 80.4–98.5 10.1

y = 3868.787*x – 0.0541 0.99815 40 77.8–80.8 1.65 78.0–81.1 1.5
80 77.7–82.6 2.5 77.8–85.9 4.0
400 82.6–91.9 3.6 82.7–91.0 3.3

Fig. 6  The LC–MS/MS MRM 
chromatograms of ACE in 
spiked milk (5 μg/kg) and real 
sample
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was at a dilution ratio of 1:8 with warm water and then 
cooled to room temperature). The results were shown in 
Fig. 6; one milk sample contained residues of ACE (45.4 µg/
kg), and no neonicotinoids and their metabolites were 
detected in any of the infant formula milk powder samples.

Conclusions

In the present study, the method of simultaneous determina-
tion of seven neonicotinoids and four metabolites in milk 
and infant formula milk powder samples by EMR-LC–MS/
MS was established. Both isotope-labeled internal standards 
and matrix-matched calibration standards were used to alle-
viate the matrix effects. Good recoveries (71.7–108.7%) and 
precision (RSDs below 13.9%) were obtained; the results 
indicate that the developed method was simple and rapid and 
the LOQ meets the current requirements of the maximum 
residue limits of relevant compounds in the USA, China, EU, 
and Japan, which can be applied for the simultaneous deter-
mination of neonicotinoids and their metabolites in milk or 
infant formula milk powder.
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