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A B S T R A C T

According to the World Health Organization estimates in 2015, 600 million people fall ill every year from con-
taminated food and 420,000 die. Microbial risk assessment (MRA) was developed as a tool to reduce and prevent
risks presented by pathogens and/or their toxins. MRA is organized in four steps to analyse information and assist in
both designing appropriate control options and implementation of regulatory decisions and programs. Among the
four steps, hazard characterisation is performed to establish the probability and severity of a disease outcome, which
is determined as function of the dose of toxin and/or pathogen ingested. This dose-response relationship is subject to
both variability and uncertainty. The purpose of this review/opinion article is to discuss how Next Generation Omics
can impact hazard characterisation and, more precisely, how it can improve our understanding of variability and
limit the uncertainty in the dose-response relation. The expansion of omics tools (e.g. genomics, transcriptomics,
proteomics andmetabolomics) allows for a better understanding of pathogenicity mechanisms and virulence levels of
bacterial strains. Detection and identification of virulence genes, comparative genomics, analyses of mRNA and
protein levels and the development of biomarkers can help in building a mechanistic dose-response model to predict
disease severity. In this respect, systems biology can help to identify critical system characteristics that confer
virulence and explain variability between strains. Despite challenges in the integration of omics into risk assessment,
some omics methods have already been used by regulatory agencies for hazard identification. Standardized methods,
reproducibility and datasets obtained from realistic conditions remain a challenge, and are needed to improve ac-
curacy of hazard characterisation. When these improvements are realized, they will allow the health authorities and
government policy makers to prioritize hazards more accurately and thus refine surveillance programs with the
collaboration of all stakeholders of the food chain.

1. Introduction

1.1. Scope

The rapid developments in whole genome sequencing (WGS), next
generation sequencing (NGS) and other omics tools, called Next

Generation Omics (NG Omics) in this paper, have led to an increase in
information about foodborne microbes, improving our understanding of
how they survive in foods, how they cause disease, and why some
strains are more virulent than others. These new insights are useful to
better understand the dose-response relationship for various pathogens
and the impact of pathogen-food combinations on risk. Furthermore,
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NG Omics tools are powerful in foodborne outbreak investigations, but
can also be used to identify and assess hazards, including those asso-
ciated with emerging pathogens and novel pathogen-food combinations
(Ronholm et al., 2016). All of this information is now available for
microbial risk assessment (MRA). However, researchers, regulatory
authorities and industry stakeholders alike are currently struggling with
how best to use these new datasets to reduce the uncertainty in all areas
of risk assessment, as it is difficult to quantify the new NG Omics-based
insights and determine how to best implement these in MRA. The focus
here will be on how NG omics impacts on hazard characterisation and
the ways in which it may provide more insight in variability and help to
limit the uncertainty in this stage of MRA. The impact of NG omics on
the other aspects (Hazard Identification, Exposure Assessment, and Risk
Characterisation) of MRA are considered in accompanying papers. To-
gether, these papers provide insight into the potential role of NG omics
in MRA and how it can be applied by those working in the field of
quantitative risk assessment across academia, industry and govern-
ment.

1.2. Risk assessment

The formal process of MRA consists of four stages, i.e. Hazard
Identification, Exposure Assessment, Hazard Characterisation and Risk
Characterisation. In Hazard Identification, agents with potentially ad-
verse health effects are identified and defined. In Exposure Assessment,
the dose at the moment of exposure is determined. In Hazard
Characterisation the probability and severity of a disease outcome is
determined as a function of the dose. Lastly, in Risk Characterisation
the overall probability and severity of the illness is determined, in-
cluding variability and uncertainty. All four activities are functionally
separated, however there are relations between the four stages. All four
stages are prone to uncertainty and variability. Variability results from
variation in the many relevant factors determining the levels and
physiological state of microbes and their effects. Uncertainty results
from imperfect knowledge of relevant phenomena including those af-
fecting the microbe, the food matrix and the susceptibility of the human
population. The advantage of quantitative risk assessment is that it can
provide insight into this uncertainty and variability, but, even more
importantly, into the factors controlling the risks. In this manner one
can base decisions on the best information available.

1.3. Hazard characterisation

In Hazard Characterisation, the hazard is characterised with regard
to its various aspects and an important part of hazard characterisation is
the determination of the dose-response relation, i.e. the probability and
severity of a disease as function of the dose. The Codex defines hazard
characterisation as “The qualitative and/or quantitative evaluation of
the nature of the adverse health effects associated with biological,
chemical and physical agents which may be present in food. For che-
mical agents, a dose–response assessment should be performed. For
biological or physical agents, a dose–response assessment should be
performed if the data are obtainable.” (CAC, 2016). However, for a real
quantitative risk assessment a dose-response relation may be considered
essential for biological agents as well.

Illness caused by microbial pathogens can manifest as either food-
borne intoxication or infection. In the case of intoxication, a toxin
produced by a microbial agent in the food is ingested, causing illness
and being the hazard. In the case of foodborne infection, with the or-
ganism being the hazard, a pathogen present in food is ingested, and
disease is caused by toxins and other bacterial products produced in vivo
(toxin-mediated illness) and/or following invasion of host tissues.
Overall, the severity of the outcome of intoxications or infections de-
pends on i) the effect of the toxin or the pathogen, ii) the level of ex-
posure to a pathogen and/or its toxin, iii) the physiological state of the
pathogen and iv) the susceptibility of the individual (e.g. infant/

elderly/pregnant/healthy adult). The uncertainty and variability asso-
ciated with each of these factors in the dose-response relationship is
discussed below.

1.4. Uncertainty and variability in dose-response

Although all aspects of risk assessment are prone to large variability
and uncertainty, this is particularly a challenge at the stage of hazard
characterisation. This stems partially from the fact that it is typically
impossible to carry out relevant experiments to determine the dose-
response relation. It is ethically unacceptable to expose large groups of
people to food that is deliberately contaminated with various doses of a
hazardous agent and measure the probability and severity of illness.
Therefore, experiments are typically conducted in either animal or cell
culture model systems. While data from these experiments can provide
insights into the relative pathogenicity and virulence potential of the
pathogens, the results require extrapolation to identify the human dose-
response, and such extrapolation can be difficult. For instance, effects
may be host-specific. Moreover, the human infectious process typically
involves multiple steps which cannot easily be simulated in cell culture-
based experiments, such as pathogen survival through the stomach, the
presence of competitive intestinal microbiota and variation in immune
system attributes and thus host-specific susceptibility. Alternatively,
epidemiological data obtained from foodborne outbreaks can be used to
develop dose-response relations (e.g. as reported by the FAO/WHO,
2002), as these constitute unintentional, real-life experiments. How-
ever, large uncertainty about dose-response relations also exists in an
outbreak, as it is difficult and often impossible to determine the exact
doses at consumption with reasonable accuracy. Even in cases in which
the dose can be reasonably well estimated, large uncertainty in other
aspects still exists (Pouillot et al., 2016). Finally, dose-responses can be
estimated using more generic epidemiological data of attack rates, to-
gether with estimates of concentrations in the implicated food products
and serving sizes (Buchanan et al., 1997), but the same large un-
certainties exist as for outbreaks. Apart from uncertainty, large varia-
bility in dose-response can be encountered. There can be huge varia-
bility in virulence between strains of the same species. Similarly,
enormous variability in vulnerability and disease severity exists within
the human population. The latter is aptly demonstrated by the acronym
YOPIs (Young, Old, Pregnant and Immunocompromised), referring to
individuals more vulnerable than the general population.

1.5. Effect of agent status and history, food, and host

Another driver of variability in the dose-response is the environ-
mental history of the pathogen which is typically identified in the ex-
posure assessment stage. This can account for the population but also
individual cell variability may affect the dose-response relationship.
Although exposure assessment and hazard characterisation are two
different parts of the risk assessment, they are inter-related as the
probability of illness (in the dose-response equation) depends on the
dose, which is the output of the exposure assessment process. However,
the physiological state of the microorganism is also relevant to its
virulence potential; as a result of its history (e.g. acid or low aw ex-
posure), an organism may have become more sensitive or more re-
sistant to stress. Additionally, food products can vary in their buffering
activity, or impact the residence time of the microorganism in the
stomach.

2. Is a strain pathogenic?

2.1. Black and white effects: some organisms are pathogenic while others
are not

To qualify an organism as pathogenic or not pathogenic, the context
needs to be specified. If sufficient toxins are formed in a food by a
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toxinogenic organism, all individuals will be susceptible. For infectious
agents, the probability of illness can vary and symptoms can also vary
in severity among patients belonging to different categories of sus-
ceptibility. Certain pathogens mainly cause illness in specific suscep-
tible populations, e.g. the YOPIS. An extreme example of opportunistic
pathogenesis would be illnesses caused by lactobacilli (Abgrall et al.,
1997; Antonie et al., 1996). Thus, it is virtually impossible to have a
clear separation between pathogenic and non-pathogenic microorgan-
isms.

Furthermore, generally multiple genetic or phenotypic determinants
need to be considered in the definition of pathogenicity (Table 1).

If the classification is too strict (Table 2), one might unexpectedly be
confronted with the emergence of a microbial hazard with previously
unknown virulence gene combinations, as in the Escherichia coli O104
outbreak in Germany (Yan et al., 2015). On the other hand, if the
classification is too generic, safe product might be declared as unfit.

In the Dutch guidelines of 2014 (NVWA, 2014) a rating based on
genetic characteristics was combined with the risk profile of the food
product: for high-risk, ready-to-eat (RTE) foods, all STEC with (stx1 OR
stx2) are considered unacceptable, while for low risk food products
expected to be cooked, only STEC's that have (stx1 OR stx2) AND [(eae)
OR (aaiC AND aggR)] AND belonging to serotypes (O26, O103, O111,
O145, O157, O104, O45, O121 or 0174) are considered unacceptable.

2.2. Emergence of new virulence gene combinations

Classifications should not be static, but need to be adaptable with
progressing insights, or with newly emerging biological attributes. For
instance, previously it was considered that a STEC either contained the
stx1 gene and/or the stx2 gene, as well as the eae (Intimin) gene, which
was thought to be the only way for the organism to attach to the in-
testinal barrier. The E. coli strain implicated in the O104 outbreak in
Germany in 2011 (Yan et al., 2015), however, was a member of a dif-
ferent pathovar, enteroaggregative E. coli, which had acquired the
ability to produce Shiga toxin and lacked eae but possessed alternative
factors (encoded by aaiC and aggR).

3. How virulent is a strain?

Once the status of the microorganism has been established and its
potential pathogenicity confirmed, the “virulence level” of the bac-
terium should be explored. Below, uses of NG Omics to specify the
virulence level of pathogenic strains will be discussed.

3.1. Sequencing analyses

In contrast to the recognized value of WGS for outbreak investiga-
tion (McGann et al., 2016), its application in MRA is largely unexplored
and faces important challenges. A first approach in methodology de-
velopment is described by Pielaat et al. (2015). Genetic data of E. coli

(single nucleotide polymorphisms; SNPs) were combined with epide-
miological and phenotypic analysis (in vitro attachment to epithelial
cells as a proxy for virulence) to inform hazard identification and ha-
zard characterisation. This application, further elaborated in Section 5,
revealed practical implications when using SNP data for MRA. In order
for WGS to be incorporated into risk assessment in a useful manner,
priority setting of high-risk phenotypes is necessary. More importantly,
high levels of genome similarity do not imply similar behaviour in the
food chain or similar levels of virulence since small genetic changes, e.g.
a single substitution in a virulence gene, may result in large phenotypic
differences. It is therefore of high importance to link genome sequences
with phenotypic attributes related to persistence in the food chain and
in vitro or in vivo virulence assessments (Franz et al., 2016).

WGS and comparative genomic analysis of bacterial isolates that
show distinct virulence or toxicity can be used to assess virulence and/
or toxicity properties of a strain, e.g. to detect virulence factors.

However, genome sequence analyses have some limitations. The
complexity in gene regulation and post-translation modifications may
lead to a high level of diversity in strain phenotypes depending on their
location (e.g. in food, the gut, intracellularly). Therefore, investigation
at the mRNA and protein levels requires expression studies using re-
levant conditions, under which putative virulence factors or toxins are
produced.

Sequencing-based microbial community analysis has been used ex-
tensively to study microbial community composition in foods and the
gut microbiota, especially associated with the development of various
diseases related to the digestive system such as inflammatory bowel
disease and irritable bowel syndrome. In addition, such tools are used
to follow pathogens in a complex microbial environment. Such complex
ecological communities include interactions among hundreds of bac-
terial species but also with the host cells and evolves over time, which
make the interpretation of results difficult (Mandal et al., 2015). This is,
however, a promising technique that is discussed further in the article
“Next generation Microbiological Risk Assessment - Meta-Omics: the
next need for integration” (Cocolin and collegues, 2018, this issue).

3.2. Transcriptomics and proteomics studies

Transcriptomics and proteomics approaches have the potential to
allow for characterisation of the physiological state of pathogens, which
may lead to paradigm shifts in approaches to hazard characterisation.
Certain conditions present in food prior to consumption may for in-
stance allow for physiological adaptation of a pathogen, rendering it
more likely to survive upon passage through the stomach (Kim et al.,
2016). The work on stressosomes in Vibrio spp., Bacillus subtilis and
Listeria monocytogenes provides a good example of how expression and
physiological response studies upon exposure to stress within different
food and host environments can help unravel how cell history exposure
to hurdles may collectively determine survival and virulence (Jia et al.,
2016; Utratna et al., 2014; Williams et al., 2014; Young et al., 2013).
Such information can be integrated into the hazard characterisation
process and will be addressed below.

Monitoring gene expression and bacterial behaviour in conditions
that simulate the human gastro-intestinal tract may provide more re-
levant insights than studying the pathogen under optimal growth con-
dition. Virulence properties of foodborne pathogens are frequently
evaluated in cell culture models or in laboratory media, but may need
to be validated in an animal model to account for the complexities of
the host environment. As proposed by Greppi and Rantsiou (2016), the
effect of food processing and preservation conditions on a pathogen's
virulence and toxin production might be eventually predicted if the
“food chain-human gastrointestinal tract continuum” is considered.
Such in vitro and in vivo approaches are commonly used to assess pa-
thogenicity, even if host specificity may play such an important role
that the quantitative level of infection risk is almost impossible to de-
duct. Nonetheless, relative ratios of virulence gene expression remain of

Table 1
Example of derivation of a descriptor of pathogenicity.

Bacillus cereus is presumptively pathogenic if it harbours [(hblA AND hblC AND hblD)
OR (nheA AND nheB AND nheC) OR cytK OR bceT OR entFM OR entS OR ces]

B. cereus is presumably not pathogenic if it does NOT contain (hblA AND hblC AND
hblD) AND NOT(nheA AND nheB AND nheC) AND NOT(cytK) AND NOT(bceT)
AND NOT(entFM) AND NOT(entS) AND NOT(ces)

hblA and hblC and hblD are needed for Haemolysisn BL (HBL); nheA, nheB, nheC
are needed for non haemolytic enterotoxin (NHE), cytK codes for Cytotoxin K;
entFM encodes enterotoxin FM; entS encodes enterotoxin S; bceT encodes en-
terotoxin T; ces encodes cereulide. In addition hemolysin A (hlyA), hemolysin II
(hlyII), hemolysin III (hlyIII), phosphatidylinositol-specific phospholipase C
(plcA), cereolysin A or phospholipase C (cerA), cereolysin B or sphingomyeli-
nase (cerB), cereolysin O (cerO), and their pleiotropic transcriptional activator
(plcR), are all involved in pathogenesis of B. cereus (Kim et al., 2015).
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interest to enhance risk estimations by improving dose-response models
and the conditions in which the pathogen expresses its virulence fac-
tors. To integrate these data into hazard characterisation, they can be
quantified using quantitative methods as detailed below.

Quantitative transcriptomic and/or proteomics coupled to virulence
and toxicity assays (and/or clinical data) can be beneficial to define
potential biomarkers of virulence or illness.

Dual transcriptomics for example, which involves simultaneously
measurement of gene expression during infection in both the host and
the pathogen (Westermann et al., 2012) would define or refine host-
related factors coupled to pathogen virulence determinants, and thus
selection of biomarkers related to illness, and more precisely to the
disease process or clinical signs. In this case, such biomarkers may help
predict clinical outcomes, and the link between dose-response and
virulence factors can be determined using omics data. The use of omics
tools to define potential “virulence biomarkers” can limit the need for
animal experiments. If pathogenicity results from a few well-char-
acterised virulence factors which are correlated to symptoms, as for B.
cereus or E. coli O157:H7, it may be possible to adjust a dose-response
model to the expression of these factors. However, the ingested dose
(number of cells) is still of relevance. The main challenges here will be
to establish and quantify the correlation between the amplitude of the
biomarker response and illness.

Transcriptional biomarkers are promising tools because of their
pathogenesis relevance in niches relevant for disease. In addition,
transcriptomics tools (e.g. RT-qPCR, RNA-seq) are well-established, fast
and cost-effective. Transcriptomics coupled with in vivo and ex vivo
experiments may allow for more in-depth investigation of the role
played by regulators in virulence, including the small non-coding reg-
ulatory RNAs; indeed, in some cases, expression of these regulators
depends on the site of infection within the host (Toledo-Arana et al.,
2009).

Although transcriptional biomarkers can improve the diagnosis and
prognosis of infectious diseases, proteins represent the functional level
of gene expression, and may thus better reflect the bacterial phenotype.
Therefore, proteins are a preferred target for biomarker studies, despite
their more challenging analysis, especially at the site of infection. As
limited examples can be found in food microbiology, we employ an
example with the pathogen Acinetobater baumannii, for which identifi-
cation of diagnostic biomarkers for pathogenesis was aided by a
quantitative proteomics approach to identify virulence factors in ex vivo
models (Mendez et al., 2015). Numerous proteomic applications with
foodborne pathogens are available in laboratory culture media. For
instance, two-dimensional electrophoresis coupled with mass spectro-
metry were employed to investigate virulence properties of a Crono-
bacter strain panel (Du et al., 2015; Ye et al., 2016).

Insight from the use of such tools helps to elucidate pathogenisis
mechanisms and can be used to characterise the hazard, but only a
fraction will be quantitative enough to be linked directly to dose-re-
sponse relations. Therefore, despite the identification of several viru-
lence factors, their quantification remains insufficient and until now no
mathematical models were employed to validate biomarkers identified
via such transcriptomic or proteomic approaches.

3.3. Perspectives: quantitative proteogenomics and metabolomics towards
systems biology

More recently, a quantitative proteogenomics strategy with
Streptococcus pyogenes was introduced to explore the consequences of
genome adaptation at the proteome level (Malmström et al., 2015).
This integrated analysis of SNPs and proteomic differences between
non-invasive and invasive isolates, identified proteins that may play a
role in disease development, and clearly this methodology can be ap-
plied to foodborne pathogens.

In addition to transcriptomics and proteomics techniques, metabo-
lomic approaches are among the newest class of diagnostic approaches
in infectious disease, and employ analysis of metabolite signals in
biological samples to identify or characterise infectious agents.
Näsström et al. (2014) used gas chromatography with time-of-flight
mass spectrometry on plasma samples and found that a combination of
six metabolites could accurately distinguish between samples from
patients with Salmonella Typhi, S. Paratyphi A or uninfected patients.
However, the cost, equipment, and analytic requirements of these ap-
proaches are currently too high for their use in routine diagnosis.

Several virulence factors may be promising candidates for bio-
markers (Table 3), provided that the omics data are coupled to statis-
tical and probabilistic analysis. After defining the level of virulence of a
pathogen, it is also necessary to specify the likely severity of the dis-
ease. This part will be discussed in the next section.

4. The severity of the outcome

4.1. Factors affecting severity

As there is overlap between virulence and the severity of the out-
come, omics tools can contribute to predicting the severity of foodborne
intoxications and infections. For foodborne pathogens, such tools can
facilitate the determination of the presence or absence of specific genes
for determinants which contribute to the likelihood, severity and out-
come of the illness. These include toxins and confirmed virulence fac-
tors, and in addition, attributes that determine the severity and out-
come of diseases, such as the ability to survive in the gastrointestinal
tract and other sites (e.g. acid tolerance, substrate utilization, genes
involved with growth at body temperature). Antibiotic resistance may
be a factor to consider as well, as it may determine the efficacy of
treatment of invasive foodborne pathogens.

In the case of foodborne intoxications, the severity depends on the
type of toxin pre-formed in food and its effect, the level of exposure,
and the susceptibility of the individual. Considerable differences in
toxic doses and disease outcomes exist for different toxins. Some basic
characteristics of toxins produced by foodborne pathogens are pre-
sented in Table 4. For certain toxins, e.g. botulinum neurotoxins and
staphylococcal enterotoxin (SE), toxin type is already known to be a
predictor for the severity of the outcome.

In the case of foodborne infection, many of the factors that de-
termine the severity of the outcome are similar to those described above
for foodborne intoxication. The major difference is that toxin

Table 2
Example of a sequence of increasingly strict criteria for definition of pathogenic potential.

STEC = (stx1 OR stx2) 

STEC = (stx1 OR stx2) AND an attachment factor like genetic element 

STEC = (stx1 OR stx2) AND known attachment factor 

STEC = (stx1 OR stx2) AND (Eae OR (aaiC and aggR)) 

STEC = (stx1 OR stx2) AND (Eae) 

stricter definition 
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production in these cases does not take place in the food, but in the
infected host, and that a multitude of virulence factors may play im-
portant roles.

Examples of foodborne bacteria that cause toxin-mediated infection,
or toxico-infections, are given in Table 4 and include Clostridium per-
fringens, Bacillus cereus, Shigella species and Shiga toxin-producing E.
coli; some of the most severe outcomes with E. coli are seen with Shiga
toxin leading to hemolytic uremic syndrome (HUS) (Majowicz et al.,
2014). Other bacteria causing foodborne infections may actively invade
the gut tissue and some can cause severe damage to the gut tissue.
Examples include enteroinvasive E. coli (EIEC), Shigella, S. enterica, and
Campylobacter jejuni (Backert et al., 2013; Kaakoush et al., 2015). The
outcomes may be especially severe in highly vulnerable individuals in
whom the organism can cause systemic infections (De Cock et al., 2012;
Kobayashi et al., 2014; Rani et al., 2011).

4.2. Intoxication

Overall, omics technologies provide powerful tools to assess the
presence, diversity and expression of genes that encode toxins, toxin-
assembling complexes, and virulence factors. For instance, botulinum
neurotoxins (BoNTs) have been classified into seven serotypes, A to G.
Types A, B, E, F and G are toxic to humans (but types C and D not), and
type A is known to have the lowest lethal dose. This information is
relevant for clinical and diagnostic purposes and when treating botu-
lism via administration of neutralizing antibody (Montecucco and
Rasotto, 2015). Substantial variation between toxins of a certain type
has also been reported for the emetic SEs and SE-like toxins produced
by S. aureus (Argudín et al., 2010; Omoe et al., 2013; Johler et al.,
2015b). In a recent study, sequences of the major enterotoxins SEB,
SEC, and SED were studied for a well-characterised set of en-
terotoxigenic S. aureus strains originating from foodborne outbreaks,
human infections, human nasal colonization, rabbits, and cattle (Johler
et al., 2016). This study exemplifies a further step towards improved
understanding of strain-specific differences in enterotoxin expression
and potential source-tracking tools. Such information is important for
hazard characterisation and prediction of the severity of the outcome.
Different toxin variants with different levels of toxicity also exist for the
B. cereus toxin cereulide, with up to 8-fold differences in levels of
toxicity (Marxen et al., 2015), and for B. cereus toxins Nhe and Hbl
(Böhm et al., 2016). While for the Nhe and Hbl toxins a nucleotide
sequence-based omics approach can be directly predictive of the level
of toxicity, this is not the case for cereulide, which is a non-ribosomally
synthesized cyclic peptide that is assembled by gene products encoded
by the ces gene cluster (Ehling-Schulz and Messelhäusser, 2013). As it is
not transcribed from mRNA, analysis of the toxin itself (e.g. by GC-MS-
MS) is required to establish the type (Marxen et al., 2015). Based on
knowledge on the composition of known toxins and relevant domains
therein, omics tools can help establish risk factors in unexpected species

(e.g. detection of botulinum toxin genes in C. baratii or C. butyricum
(Fach et al., 2009)), and can help identify modified or hybrid toxins, e.g.
the novel hybrid botulinum neurotoxin FA (Pellett et al., 2016).
Moreover, omics tools can aid the identification of novel toxins from
unique sources, as demonstrated for SEs (Johler et al., 2015a).

4.3. Foodborne infection

In the case of foodborne infections, in the first instance, the dose of
bacteria that reach the gut may depend on the ability of an organism to
survive acid exposure in the stomach (Ceuppens et al., 2012) and bile
acid in the upper intestinal tract (Crawford et al., 2012). For spor-
eformers such as C. perfringens and B. cereus which may be ingested as
spores, the ability of spores to germinate and grow in the gut is another
determining factor (Berthold-Pluta et al., 2015). In addition, the ability
of a bacterium to thrive in the gut where it may produce toxins or
virulence factors (adhesins, invasins) may play a critical role. This in-
cludes the optimal growth temperature of a pathogen. Psychrotrophic
Bacilus weihenstephanensis strains, for example, carry the same toxin
genes as B. cereus strains, but have not been associated with foodborne
illness, which might be due to the fact that these strains do not thrive at
37 °C (Stenfors Arnesen et al., 2011).

Other factors that may determine the severity of the illness relate to
the ability of the bacterium to utilize nutrients present in the gut,
compete adequately with other gut microbiota, sometimes even im-
pacting the microbial community composition in the gut, and to grow at
low redox potential. For example, the anaerobic C. perfringens lacks
many genes related to amino acid biosynthesis and, thus, its ability to
upregulate the production of toxins and enzymes is important to its
growth. Toxin production, concomitant with sporulation, is upregu-
lated by contact with Caco-2 cells (Chen et al., 2014).

The overall microbiota in the gut may also be a factor that de-
termines the outcome of disease. There is evidence that the composition
of the gut microbiota is associated with infant botulism (Shirey et al.,
2015). Other examples include reports that the gut bacterium Bacter-
oides thetaiotaomicron influences the virulence potential of en-
terohemorrhagic E. coli (Iversen et al., 2015; Cordonnier et al., 2016).
Furthermore, in orally infected mice, the ability of certain strains of L.
monocytogenes to produce the bacteriocin listeriolysin S in the intestine
was found to alter microbial community composition in the gut, in-
creasing intestinal populations of the pathogen and deeper organ in-
fection (Quereda et al., 2016).

4.4. Omics and predicting severity

WGS (or other omics)-based analysis of a foodborne pathogen's
population structure in an epidemiological context has clear potential
to identify clonal groups that may differ in their contribution to illness,
types of illness outcomes or their propensity for certain populations. For

Table 3
Examples of potential biomarkers associated with strain virulencea.

Omic methods used Type of
biomarker

Biomarker candidate Type of response
measured

Remarks and experimental reproducibility References

Genomics Gene (CDS) stx of E. coli Qualitative / Lindsey et al., 2016
SNP stx of E. coli Qualitative / Pielaat et al., 2015
Type of toxin gene
(CDS)

Gene encoding neurotoxin
of Clostridium botulinum

Qualitative / Peck and van Vliet, 2016

Transcriptomic mRNA SPI-1 genes or hil1A of
Salmonella enterica

Quantitative Comparison between two different serotypes. 2
biological replicates

Elhadad et al., 2016

Proteomic Protein typA of Cronobacter
sakazakii

Quantitative Comparison between virulent and non-virulent
strains. 3 technical replicates, but no biological
replicate

Du et al., 2015

Metabolomic Metabolite Cereulide toxin of B. cereus Quantitative / Biesta-Peters et al., 2010;
Marxen et al., 2015

a Abbreviations: CDS=Coding DNA sequence, SNP= Single-nucleotide polymorphism.
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instance, such analysis of L. monocytogenes from clinical cases revealed
“hypervirulent” clones consisting of strains with propensity for invasive
illness in individuals with few or no evident co-morbidities (Maury
et al., 2016). Strains of these hypervirulent clonal groups were more
prone to breach the blood-placenta and blood-brain barriers, thus re-
sulting in Central Nervous System (CNS) infections and perinatal lis-
teriosis. In contrast, other strains with reduced virulence (hypovirulent
clones) tended to cause listeriosis in highly compromised individuals
with multiple co-morbidities and often led to septicemia without fur-
ther invasion of CNS or placenta (Maury et al., 2016).

When a foodborne pathogen causes systemic infection, certain host
biomarkers are used in clinical microbiology as indicator for outcomes
such as sepsis, e.g. procalcitonin level as host-specific marker (Lee,
2013), or to predict the severity of the outcome, e.g. procalcitonin as a
prognostic biomarker for severe sepsis and septic shock (Poddar et al.,
2015). Thus, exploration of host biomarkers can also be a way to pre-
dict the severity of clinical signs or relapses, and can complement risk
assessments based on the pathogen, including efforts utilizing omics
tools.

Host responses may significantly contribute to the disease burden.
For instance in the case of Campylobacter infections, some patients de-
velop the debilitating Guillain-Barré syndrome (GBS). The development
of GBS is an autoimmune complication mediated by antibodies raised in
the course of infection against specific antigens of C. jejuni that mimic
antigens on the human myelin sheath. Only certain strains of C. jejuni
possess relevant antigens, hence WGS and other omics tools have the
capacity to readily determine whether the infecting strain is likely to
result in post-infection sequelae such as GBS. Coupling high-throughput
data omics analyses, clinical data and mathematical modelling would
improve or refine systems biology to understand complex biological
systems as a whole, like dose-response and disease severity (Dix et al.,
2016). The application of systems biology for hazard characterisation
will be elaborated in Section 5.

Lastly, the occurrence of antibiotic resistance poses a great chal-
lenge to therapeutic treatment options (e.g. Zhang et al., 2014). With a
global increase in antibiotic resistance in the food chain (Doyle, 2015),
antibiotic resistance of foodborne pathogens is a major risk factor in the
outcome or severity of disease. Antimicrobial resistance may be cor-
related with illness that has enhanced severity and duration (Angulo
et al., 2004; Mølbak, 2005) or with treatment failure when antibiotics
are used to combat the illness (Lammie and Hughes, 2016). The
emergence of antibiotic resistance in foodborne pathogens can be
readily identified and monitored using omics approaches.

5. Implications for the dose-response

5.1. Salmonella as a case study

In this case study, we will demonstrate how omics technologies
described above may impact MRA by re-examining the dose-response
outlined in the 2002 WHO-FAO hazard characterisation of Salmonella.

Salmonellosis is caused by Salmonella enterica, a pathogen which can
be found in the digestive tract of humans and animals, such as birds,
cattle and reptiles. More than 2500 S. enterica serotypes are known, and
epidemiological data suggest that virulence is variable within and
among serotypes (Lianou and Koutsoumanis, 2013). Virulence in pa-
thogenic strains has been linked to the acquisition by horizontal gene
transfer of pathogenicity islands (SPIs), which encode secretion systems
for virulence proteins (Mills et al., 1995). Besides the five SPIs present
in strains which cause gastroenteritis, some serovars harbour virulence
plasmids which encode genes involved in the intra-macrophage sur-
vival of Salmonella. While some Salmonella serovars are restricted to one
or few hosts, others have a broad host spectrum. Furthermore, to sur-
vive the hurdles of the immune system and internalisation in host cells,
Salmonella needs to be able to scavenge scarce ions and resist reactive
oxygen species. Taken together, these factors constitute a complexTa
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system regulated by a network of transcription factors, which co-
ordinate the expression of virulence and stress response genes (Rhen
and Dorman, 2005). Fig. 1 shows the regulatory network of a particu-
larly virulent strain of S. Typhimurium.

The complexity of the Salmonella infection system outlined above
impacts the dose-response relationship for the organism. In 2002, the
WHO-FAO reported on the hazard characterisation of Salmonella as part
of a larger risk assessment framework for this zoonosis in eggs and
broiler chickens. It describes both pathogen and host characteristics, as

well as food-related factors as contributing factors to the dose-response
relationship. An overarching beta-Poisson dose-response model was
derived from available outbreak data and an attempt was made to
parameterize the model depending on the underlying pathogen (dif-
ferent Salmonella serovars) and host characteristics (age-dependent
susceptibility).

One of the drawbacks of fitting a dose-response model to outbreak
data is the uncertainty in the data; for instance the actual ingested dose
and/or true number of exposed humans may not be accurately known.

Fig. 1. Regulatory network of virulence genes of Salmonella serovar Typhimurium which has a high probability of illness as shown in a model and by epidemiological
data (Zomer et al., 2014). As in clinical studies, network analysis could lead to the discovery of biomarkers or emerging properties which characterise virulence in
different strains. The nodes represent genes or transcription factors (for details, see Box 1), the size of the nodes is proportional to the number of its connections; the
main regulators from the data available are SsrB, hilA, PhoP, Fis, OmpR and CsgD. They are known to contribute to virulence but are usually considered in isolation.
The regulatory links are undirected for clarity of presentation. They were inferred from SalmoNet (www.SalmoNet.org), see Box 1.

Box 1

The main mode of regulation in bacteria is the binding of transcription factors (TF) in the promotor regions of operons to either activate or
inhibit the transcription of genes. The binding sites in the promotor region of orthologous genes of Salmonella are strain-specific (Métris
et al., 2017b). As a consequence, not only are genes that confer virulence or resistance in Salmonella strain-specific but also they are
interacting. Information about regulatory networks is scarce for organisms other than model organisms such as E. coli or B. subtilis but has
recently been gathered for 10 strains of Salmonella (www.SalmoNet.org). Based on a list of 233 genes associated to virulence as described in
a virulence factor database (VFDB) (www.mgc.ac.cn/VFs/main.htm), a regulatory network of a particularly virulent strain of Salmonella
Typhimurium was constructed which is shown in Fig. 1. As no data were available for the binding sites of that specific strain, we assumed
that if links were found for orthologous genes in any other strain (www.salmoNet.org), they might also be present in this particular strain.
Note that for about 25% of the genes selected the regulation was completely unknown, because Salmonella has TFs for which the binding
sites have not yet been determined (Métris et al., 2017b). Some of the links determined by bio-informatics are spurious as factors other than
the binding site such DNA topology influence regulation. Moreover, regulation is condition-specific so the genes that are linked are not
necessarily all expressed during infection.
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Retrospective studies, in general, make it difficult to assess the con-
tribution of different biological factors to the overall response. All 5000
data sets used in this study resulted in a wide distribution of beta-
Poisson dose-response parameters as illustrated in Fig. 2.

For risk assessment to support food safety management decisions,
the question remains: “what dose-response curve should be used to
come to risk assessments that can be used in decision support regarding
interventions for Salmonella in different food chains when uncertainty
and variability within and between serovars captured by applying a
beta-Poisson model are as large as those found in the study? (WHO-
FAO, 2002)”.

Moreover, in contrast to the retrospective WHO-FAO (2002) study,
the basis of risk assessment lies in a bottom-up, farm-to-fork, approach
developed to predict microbial risk based on a low-dose region causing
sporadic cases rather than explaining outbreaks. From the outbreak
data used in the WHO-FAO study to investigate the dose-response re-
lationship for Salmonella, there was also no evidence that the likelihood
of poultry-related S. Enteritidis to produce illness differed from other
serovars.

To summarize, an important outcome of the study was that serovar
alone may not be a good predictor for probability of illness; the in-
formation at that time was insufficient to quantify the contribution of
the different biological factors, both from the human and microbial
side, affecting the dose-response relationship.

5.2. Towards improved understanding of dose-response relations

5.2.1. Linking phenotypic with ‘omics’ data
Experimental (in vitro) research under controlled conditions can

help to unravel the relationship between exposure and virulence as an
explanation for the difference in number of illness cases associated with
different strains. Moreover, combining experimental results with new
information from omics data will be a step forward in understanding
the biological dynamics underlying the complex system of expression of
virulence and stress resistance genes for different strains independent of
serovar. Although it is evident that the true biological dose-response for
Salmonella will not change with the generation of omics data, the uti-
lization of the latter does open opportunities to build a mechanistic
dose-response model instead of applying an empirical model fitted to
outbreak data (e.g. beta-Poisson). A mechanistic model, in which
parameters have biological meaning, provides a basis to include dif-
ferent strain-dependent characteristics and create opportunities for less
uncertain risk estimates independent of the dose-region.

Recent work shows large variability in infectivity for different
Salmonella strains (in the range of 10−5 for S. Kedougou to 10−1 for S1
1,4,[5],12:i:-) obtained from “in vitro gastro intestinal tract” (GIT) ex-
periments (Kuijpers et al., 2018). The survival of 60 strains of different
Salmonella serovars was followed through the GIT system and the frac-
tion of cells invading intestinal cells compared to the initial overnight

culture was calculated as proxy for infectivity. In accordance to the
WHO-FAO report of 2002, consistent testing of different strains from 32
different serovars underpins the suggestion that serovar alone may not be
a good predictor for human illness. Yet, independent of serovar, current
investigations show an association between certain virulence genes in the
strains under investigation and their in vitro virulence when categorized
into high –mid high –mid low and low infectivity strains (Kuijpers et al.,
2018). Further analysis, e.g. with gene knock-out experiments, is needed
to assess how much of the variability in infectivity in the in vitro GIT
system can be explained by one or multiple virulence genes. Subsequent
transcriptomics or proteomics studies can help in establishing a true
biological dose-response relationship.

5.2.2. Immediate new possibilities with NGS sequencing of pathogens
Since the 2002 WHO-FAO report there has been a vast increase in

the amount of information from diverse data sources on the genetics
and molecular biology of foodborne pathogens. Whether more genomic
information about strain variability will allow us to significantly de-
crease the uncertainty in the dose-response is an open question because
of other sources of variability and uncertainty such as those associated
with host susceptibility. The challenge with these new data is to link
quantitatively genomic information with the probability of illness. First
of all it is not clear which genomic information (e.g. SNPs, virulence
factors etc.) will best serve as indicator of virulence. Secondly, metrics
for virulence will need to be integrated into the dose-response in a
quantitative manner.

Two possible approaches are to (i) reduce the complex network of
virulence factors to one or a few markers that are correlated to viru-
lence or (ii) determine the probability of illness as an emergent property
of a complex system with systems biology methods.

The first approach, i.e. the reduction of complexity has been in-
vestigated by Pielaat et al. (2015), where the association between
phenotypic and genotypic data was determined with a Genome Wide
Association Studies (GWAS) to reveal marker genes for ‘virulence’ of
Shiga-toxin-producing E. coli O157.

Once virulence markers have been identified, the next question to
be addressed is how to integrate them into the dose-response equation.
The “mapping problem” of translating information on 104 SNPs through
103 genes and 101 biologically relevant effects to 1 measure of response
(number of ill people) has been described for E. coli by Pielaat et al.
(2015). Besides practical implications, this study suggests statistical
elements and biological confirmation that need to be considered before
an association can be applied to MRA. While markers may be a solution
for toxin producers like E. coli, an alternative strategy may be needed
when the virulence network is more complex and multifactorial, as in
the case of Salmonella.

The second systems biology-based approach, could help identify
critical system characteristics that confer stress resistance and viru-
lence.

Fig. 2. Uncertainty in the dose-response para-
meters for Salmonella of the beta-Poisson model
used in the WHO-FAO report (WHO-FAO, 2002);
the thick continuous line is the expected value, the
dashed lines represent the 2.5 and 97.5th percen-
tiles and the thin dotted line the upper and lower
bounds. The uncertainty is also large at low in-
fectious doses (in cfu; right panel). See the WHO-
FAO report (2002 Table 3.16 therein) for summary
statistics of the 5000 model fits.
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Modelling regulatory interactions may explain for instance how
different strains of Salmonella have different virulence and resistance to
stress (Baranyi et al., 2015). Which particular properties of the network
are relevant to virulence is yet to be determined; for example, should
the network be divided into elementary subgraphs (Alon, 2007) or
analysed as a whole with information theory methods (Jia et al., 2013)?
How can we best integrate metabolism (Kim et al., 2013) or small
metabolites, which seem to play a prominent role in response to en-
vironmental stress (Métris et al., 2017a) with regulation?

As shown in the Salmonella case study, the use of biomarkers and/or
systems biology approaches have the potential of determining virulence
factors in silico provided that:

• biomarkers that reliably correlate to virulence are identified,

• different data types (genome sequence and condition/time specific
data such as transcriptomics, proteomics and/or metabolomics) can
be reliably integrated into a model to predict virulence.

To decipher the sources of uncertainty and variability in the dose-
response however, still requires a quantitative relationship between in
silico predictions and results from epidemiological studies. We have
focused here on NGS data obtained from the foodborne pathogens, yet,
biomarkers may equally be used in humans (in vivo) or in vitro (cell
lines, models of organs) as in toxicological assessments (Krewski et al.,
2014). Results are encouraging to provide crucial insight in the area of
hazard characterisation (Pielaat et al., 2015, Kuijpers et al., in prep.,
Abdo et al., 2015) but require further research before the results can be
linked into a full quantitative MRA.

6. Implications NG omics for industry, academia and regulatory
agencies

6.1. Omics-based risk assessment models

An enduring challenge for hazard characterisation is to be able to
rigorously convert multiple factors, from genomics, transcriptomics,
and proteomics data etc., into parameters that define risk (Pielaat et al.,
2015; Membré and Guillou, 2016) without adding new sources of un-
certainty. Den Besten and colleagues (2018, this issue) make sugges-
tions for some analytical tools to tackle this difficult issue. In Sections 3
and 4 we also expanded on this with an example on how this could be
addressed using aspects of this new technology.

The importance of understanding aspects, such as stressosome me-
chanisms, by applying NG omics is an interesting venue for risk as-
sessment development, where impacts from different hurdles in the
food chain may interact with the infection pathways and, thereby, af-
fect the ultimate probability of illness. The sequential nature of the
farm-to-fork approach in risk assessment, provides an opportunity to
implement NG omics studies to fully integrate the history between these
exposure assessment and hazard characterisation components. This
suggests that although ‘the quantity as a dose’ is very important in
evaluating risk from an identified hazard, the ‘state of the dose’ can also
contribute significantly.

Understanding strain variability in virulence profiles, and the me-
chanistic interaction between pathogen and host are topics which NG
omics could address and improve upon. Improvements in this field are
expected to lead to more accurate mechanistic and quantitative, pre-
dictive models of the dose-response and probability of illness (Membré
and Guillou, 2016). Indeed, by combining NG omics-derived virulence
data with risk assessment it is expected to more accurately establish the
identity of hazards, to reduce the uncertainty and improve accuracy in
calculating the dose-response and probability of illness.

Additionally, NG omics case studies suggest that previously identi-
fied hazard groups, at the level of species or serogroup, may in the
future be improved by further disaggregation into more numerous sub-
groupings based on distinct risk categories (Pielaat et al., 2015). This

use of E. coli O157:H7 strains and clustering the strains based on SNP
analysis demonstrates how an understanding of omics-based virulence
profiles could broaden our appreciation of risk. For example, clustering
strains based on various pertinent epidemiological factors could de-
lineate specific geographies and commercial markets. This example also
shows that many different aspects need to be combined and validated in
order to have sufficient certainty in the outcome of such disaggregation.
WGS data analysis can thus be used in risk assessments to prioritise
specific phenotypes using risk-ranking (Franz et al., 2016). This insight
and approach could have significant impact on the management of risk
by food authorities and food companies, changing intervention strate-
gies, determining how risk assessments are integrated across food
chains and what hazards are identified.

A number of additional reservations need consideration when ap-
plying novel technologies, such as NG omics. Firstly, most, if not all,
current studies that use omics data use in vitro measurements, targeting
marker expression for prediction of virulence in vivo. Beyond their use
as ranking tools, translation from genotypic to phenotypic data, with
direct relevant risk outcome to the host, must be established with
careful validation if these NG omics-based models are to have wider
quantitative use in risk assessment.

Secondly, several statistical concerns are highlighted by Lay Jr.
et al. (2006), emphasizing the issues with lack of standardization of
current methods and reproducibility. The design of experiments in
omics-based studies (due to e.g. overparameterization and defining the
population for sampling) also can lead to bias towards, or higher
probability of, false positives outnumbering true positives.

Lastly, as mentioned above, hazard characterisation using omics-
based approaches will be difficult to be constructed accurately because
of a natural paucity of relevant datasets. At the moment, generating or
obtaining omics datasets under realistic conditions will continue to be a
hurdle. However, the historical and current focus of these databases has
been on clinical and outbreak isolates, which has led to an uninten-
tional bias in the datasets composition. For example, the majority of
NCBI data collected on Salmonella enterica from the UK (accessed on
31.01.2017) corresponds to 12,204 isolates, of which 94.7% were de-
rived from human sources. Thus, the current bioinformatics analyses do
not give a balanced perspective of the ecology of the hazard groups, and
engenders a bias when attempting to use this information for virulence
profiling and predicting evolutionary emergence in such groups. For
industry it is equally important to understand how these pathogens
survive in both the product and process.

As a consequence of new NG omics understanding, more pertinent
(different and new) hazards can be prioritized by health authorities and
government policy to implement new microbiological criteria, import
controls and surveillance. Such changes should benefit the general
public health of the markets implicated. Food regulators and health
authorities may need to refine existing hazards, or identify new hazards
to target in monitoring programmes. If NG omics technologies are ap-
plied to paired host-pathogen relationships and, as such, lead to better
understanding of virulence and risk, then significant effort will be re-
quired by policy makers and risk managers to communicate to the
public the ever more complicated and ethically sensitive risk outcomes.
One aspect of this is the reductionist tendency when applying a prac-
tical policy agenda, which is a challenge for NG omics-driven quanti-
tative MRA, and reflected by the so-called “mapping” problem, dis-
cussed earlier (Pielaat et al., 2015), where multiplicity of data is
summarised as single risk outcomes.

6.2. Concluding remarks

The impact of NG omics technology use will likely require changes
in food product specifications, surveillance programmes and detection
methodology by food companies. In addition, companies distributing
across many markets may encounter increased regulatory diversity in
risk management strategies, as information on virulence and dose-
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response in relationship to specific hazard-food-host combinations be-
comes increasingly available using NG omics.

To turn the potential future health benefits presented by NG omics
and ‘big data’ technologies into a reality, for the benefit of consumers
and food safety, it will require the collaborative and combined re-
sponsibility of food companies, regulatory bodies, academia, health-
care professionals and institutions and governmental policy makers. For
MRA in particular, the application of NG omics technologies offers
tantalizing opportunities to improve both the quality and accuracy of
current hazard characterisation efforts. However, it is in the integration
of these technologies across all the domains of risk assessment and
management (Bergholz et al., 2014; Ringus et al., 2013) where most
advancement and improvement will be made.
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